

Effect on wheat cultivars (Triticum aestivum cv. Aqaab, MH-97)

The net impact of individual and combined stress on plant growth

Crop: Wheat (*Triticum aestivum cv.* Aqaab)

Stress 1: Salinity (15 dS m-1) Stress 2: Waterlogging (0.01m) Stage of plant: Tillering, booting

The table shows the effect of waterlogging and salt alone and in combination on the growth of wheat cultivars.

Soil	Cultivar	Treatment	Type A parameters				
			Grain yield	100 grain weight	Spike length	Number of spikes/plant	Number of tillers/plan t
Non-compact	Aqaab	Waterlogging	21.7-	9.3♥	9.4♥	9.9◀	NA
		Salt (15 dS m-1)	38.3♣	30.2◀	18.7₹	49.8◀	NA
		Salt (15 dS m-1) + Waterlogging (Simultaneous stress)	45.0◀	44.2◀	34.4♣	70.0♣	NA
	MH-97	Waterlogging	30.5♣	21.4	-3.7♠	28.4♣	6.5♣
		Salt (15 dS m-1)	50.8♣	50.0♣	48.1♣	64.3♣	43.5♥
		Salt (15 dS m-1) + Waterlogging (Simultaneous stress)	62.7₹	57.1♣	25.9♣	73.2	56.5♥
Compact	Aqaab	Waterlogging	-7.0 ↑	-9.1 ↑	14.8♣	16.8♥	-30.3♠
		Salt (15 dS m-1)	60.5◀	36.4♣	33.3♣	64.3₹	72.7♣
		Salt (15 dS m-1) + Waterlogging (Simultaneous stress)	39.5♥	30.3♣	48.1♣	64.3♥	51.5◀

	MH-97	Waterlogging	-28.1	-10.7 ♠	-4.7♠	0.0	-24.1♠
		Salt (15 dS m-1)	65.6₹	50.0◀	52.4♣	40.1♣	69.0♣
		Salt (15 dS m-1) + Waterlogging (Simultaneous stress)	43.8◀	39.3♥	40.4♣	40.1♣	55.2♣

Reference – Saqib M, Akhtar J, Qureshi RH (2004) Pot study on wheat growth in saline and waterlogged compacted soil I. Grain yield and yield components. Soil and Tillage Research 77(2):169-177.

Note: Values presented in the table were calculated using the formula described below.

$$Reduction \ over \ control \ (\%) = \frac{(Value \ _{Control} - Value \ _{Stress})}{Value \ _{Control}} \quad x100$$

- 1) '\subset' indicates plant parameters affected by stress that lead to high susceptibility (higher the value more the damage).
- 2) '- indicates plant parameters less/not affected by stress leading to improved resistance (higher the value lesser the damage).

Inference from the study: Saqib et.al. 2004, studied the interaction of waterlogging and salinity in two wheat cultivars aqaab and MH-97. Plants were subjected to single and simultaneous salt and waterlogging stress treatment. Plants were grown in two soil types; non-compact and compact. Grain yield, 100-grain weight, spike length, the number of spikes, and the number of tillers were reduced synergistically under combined stress for both cultivars in non-compact soil. However, this reduction was not synergistic for cultivar MH-97 in compact soil. Thus, this stress combination is detrimental to the growth and physiology of wheat cultivars.

^{&#}x27;*' - For more information on parameter classification, please refer to the 'methodology' tab.