

Stress Combination and their Interactions in Plants (SCIP) Database

Website link- http://www.nipgr.ac.in/scipdb.php

Effect on wheat cultivars (Triticum aestivum L.)

The interaction between the fungal pathogens under combined stress at plant interface

Stress 1: Pyrenophora tritici-repentis

Stress 2: Puccinia tritici Stage of plant: Seedling

The table shows the competitive interaction between fungus *P. tritici-repentis* and *P. tritici* in wheat cultivars in relation to the germination, appressorium formation, germ tube formation, fungal re-isolation, incubation period and disease lesion formed by the pathogen

Spore production in the absence of competition					
Cultiv ar	Leaf stage	Treatment	Response under combined stress (Type B Parameter*)		
			Conidia (x10²)/leaf	Urediniospores(x10 ²)/leaf	
2145	Youn g	P. tritici-repentis (1×10 ⁴ conidia/mL)	13.10		
	Old	P. tritici-repentis (1×10 ⁴ conidia/mL)	40.77		
Jagger	Youn g	P. tritici-repentis (1×10 ⁴ conidia/mL)	3.20		
	Old	P. tritici-repentis (1×10 ⁴ conidia/mL)	6.69		
TAM 217	Youn g	P. tritici-repentis (1×10 ⁴ conidia/mL)	10.77		
	Old	P. tritici-repentis (1×10 ⁴ conidia/mL)	31.74		
2145	Youn g	P. tritici (2 mg spores/mL)		15.68	
	Old	P. tritici (2 mg spores/mL)		4.27	
Jagger	Youn g	P. tritici (2 mg spores/mL)		213.4	
	Old	P. tritici (2 mg spores/mL)		171.1	
TAM 217	Youn g	P. tritici (2 mg spores/mL)		306.8	
	Old	P. tritici (2 mg spores/mL)		210.3	

Competition between P. tritici-repentis and P. tritici

Proportion of urediniospore production by *P. triticina* when *P. tritici-repentis* was present as a competitor compared to when *P. tritici-repentis* was absent

Cultiv ar	Leaf stage	Treatment	Proportion of urediniospores production
2145	Youn g	P. tritici (2 mg spores/mL) +P. tritici-repentis (1×10 ⁴ conidia/mL) (Simultaneous stress) on 28 days old plant	0.31

Stress Combination and their Interactions in Plants (SCIP) Database Website link- http://www.nipgr.ac.in/scipdb.php

· T	[P. tritici (2 mg spores/mL) +P. tritici-repentis	
	Old	$(1\times10^4 \text{ conidia/mL})$ (Simultaneous stress) on 28	0.14
		days old plant	
	*7	P. tritici (2 mg spores/mL) + 3 days interval	
	Youn	+P. tritici-repentis (1×10 ⁴ conidia/mL)	0.35
	g	(Sequential stress) on 28 days old plant	
	Old	P. tritici (2 mg spores/mL) +3 days interval +P.	
		tritici-repentis (1×10 ⁴ conidia/mL) (Sequential	0.32
		stress) on 28 days old plant	
	Youn	P. tritici-repentis (1×10 ⁴ conidia/mL) +P. tritici	
		(2 mg spores/mL) (Sequential stress) on 31	0.19
	g	days old plant	
		P. tritici-repentis (1×10 ⁴ conidia/mL) +P. tritici	
	Old	(2 mg spores/mL) (Sequential stress) on 31	0.38
		days old plant	
Jagger	37	P. tritici (2 mg spores/mL) +P. tritici-repentis	
	Youn	(1×10 ⁴ conidia/mL) (Simultaneous stress) on 28	0.73
	g	days old plant	
		P. tritici (2 mg spores/mL) +P. tritici-repentis	
	Old	$(1\times10^4 \text{ conidia/mL})$ (Simultaneous stress) on 28	0.31
		days old plant	
	Youn	P. tritici (2 mg spores/mL) + 3 days interval +	
		P. tritici-repentis (1×10 ⁴ conidia/mL)	0.89
		(Sequential stress) on 28 days old plant	
	Old	P. tritici (2 mg spores/mL) + 3 days interval +	
		P. tritici-repentis (1×10 ⁴ conidia/mL)	0.58
		(Sequential stress) on 28 days old plant	
	Voun	<i>P. tritici-repentis</i> $(1\times10^4 \text{ conidia/mL}) + P$.	
	Youn g	tritici (2 mg spores/mL) (Sequential stress) on	0.54
		31 days old plant	
		<i>P. tritici-repentis</i> $(1\times10^4 \text{ conidia/mL}) + P. tritici$	
	Old	(2 mg spores/mL) (Sequential stress) on 31	0.62
		days old plant	
TAM	Youn	P. tritici (2 mg spores/mL) + P. tritici-repentis	
2107		$(1\times10^4 \text{ conidia/mL})$ (Simultaneous stress) on 28	0.25
	g	days old plant	
		P. tritici (2 mg spores/mL) + P. tritici-repentis	
	Old	$(1\times10^4 \text{ conidia/mL})$ (Simultaneous stress) on 28	0.086
		days old plant	
	Youn g	P. tritici (2 mg spores/mL) + 3 days interval +	
		P. tritici-repentis (1×10^4 conidia/mL)	0.40
		(Sequential stress) on 28 days old plant	
		P. tritici (2 mg spores/mL) +3 days interval +	
	Old	P. tritici-repentis (1×10^4 conidia/mL)	0.26
		(Sequential stress) on 28 days old plant	

Stress Combination and their Interactions in Plants (SCIP) Database Website link- http://www.nipgr.ac.in/scipdb.php

	Youn g	P. tritici-repentis (1×10 ⁴ conidia/mL) + P. tritici (2 mg spores/mL) (Sequential stress) on 31 days old plant	0.28
	Old	P. tritici-repentis (1×10 ⁴ conidia/mL) + P. tritici (2 mg spores/mL) (Sequential stress) on 31 days old plant	0.16

Proportion of conidial production by *P. tritici repentis* when *P. triticina* was present as a competitor compared to when *P. triticina* was absent

Cultiv ar	Leaf stage	Treatment	Proportion of conidial production
2145	Youn	P. tritici-repentis (1×10 ⁴ conidia/mL) + P. tritici (2 mg spores/mL) (Simultaneous stress) on 31 days old plant	1.11
	Old	P. tritici-repentis (1×10 ⁴ conidia/mL) + P. tritici (2 mg spores/mL) (Simultaneous stress) on 31 days old plant	1.10
	Youn g	P. tritici-repentis (1×10 ⁴ conidia/mL) + 3 days interval + P. tritici (2 mg spores/mL) (Sequential stress) on 28 days old plant	1.42
	Old	P. tritici-repentis (1×10 ⁴ conidia/mL) + 3 days interval + P. tritici (2 mg spores/mL) (Sequential stress) on 28 days old plant	1.20
	Youn g	P. tritici (2 mg spores/mL) + P. tritici-repentis (1×10 ⁴ conidia/mL) (Sequential stress) on 31 days old plant	0.89
	Old	P. tritici (2 mg spores/mL) + P. tritici-repentis (1×10 ⁴ conidia/mL) (Sequential stress) on 31 days old plant	0.96
Jagger	Youn g	P. tritici-repentis (1×10 ⁴ conidia/mL) + P. tritici (2 mg spores/mL) (Simultaneous stress) on 31 days old plant	0.58
	Old	P. tritici-repentis (1×10 ⁴ conidia/mL) + P. tritici (2 mg spores/mL) (Simultaneous stress) on 31 days old plant	0.66
	Youn g	P. tritici-repentis (1×10 ⁴ conidia/mL) + 3 days interval + P. tritici (2 mg spores/mL) (Sequential stress) on 28 days old plant	1.66
	Old	P. tritici-repentis (1×10 ⁴ conidia/mL) + 3 days interval + P. tritici (2 mg spores/mL) (Sequential stress) on 28 days old plant	1.37
	Youn	P. tritici (2 mg spores/mL) + P. tritici-repentis (1×10 ⁴ conidia/mL) (Sequential stress) on 31 days old plant	0.13
	Old	P. tritici (2 mg spores/mL) + P. tritici-repentis (1×10 ⁴ conidia/mL) (Sequential stress) on 31 days old plant	0.21

Stress Combination and their Interactions in Plants (SCIP) Database

Website link- http://www.nipgr.ac.in/scipdb.php

TAM 2107	Youn g	P. tritici-repentis (1×10 ⁴ conidia/mL) + P. tritici (2 mg spores/mL) (Simultaneous stress) on 31 days old plant	0.062
	Old	P. tritici-repentis (1×10 ⁴ conidia/mL) + P. tritici (2 mg spores/mL) (Simultaneous stress) on 31 days old plant	0.87
	Youn g	P. tritici-repentis (1×10 ⁴ conidia/mL) + 3 days interval + P. tritici (2 mg spores/mL) (Sequential stress) on 28 days old plant	0.86
	Old	P. tritici-repentis (1×10 ⁴ conidia/mL) + 3 days interval + P. tritici (2 mg spores/mL) (Sequential stress) on 28 days old plant	1.18
	Youn g	P. tritici (2 mg spores/mL) + P. tritici-repentis (1×10 ⁴ conidia/mL) (Sequential stress) on 31 days old plant	0.58
	Old	P. tritici (2 mg spores/mL) + P. tritici-repentis (1×10 ⁴ conidia/mL) (Sequential stress) on 31 days old plant	0.66

For raw data – Click here (.xlsx file)

Reference- AL Naimi FA, Garrette KA, Bockus WW (2005) Competition, facilitation, and niche differentiation

in two foliar pathogens. Oecologia 143: 449-457

Note: Values are presented as it is from the source article without subjecting to the calculation.

'*'- For more information on parameters classification, please refer to 'methodology' tab

The inference from the study: Al-Naimi *et al.*, 2005 studied the interaction between the facultative saprophyte *P. tritici* – *repentis* and obligate biotroph *P. tritici* in old and young leaves of the three wheat cultivars. Both the pathogens were inoculated singly and in combination in different orders on wheat leaves. Three winter wheat genotypes; 2145 supporting high reproduction in *P. tritici-repentis* only, Jagger supporting high reproduction in *P. tritici* only, and TAM 107 supporting high reproduction in both the pathogens. The overall data revealed that the competition among both the pathogens resulted in the high sporulation index for *P. tritici-repentis* than for *P. tritici* for all the cultivars. The overall observations lead to the conclusion that due to interspecific competition *P. tritici* sporulation was substantially reduced in the presence of *P. tritici-repentis*, whereas *P. tritici-repentis* had proportionally low reductions in sporulation in the presence of *P. tritici* irrespective of the genotype supporting the high sporulation of either fungi.