Stress Combination and their Interaction in Plants (SCIP) Database

Website link: <u>http://www.nipgr.res.in/scipdb.php</u>

Effect on wheat cultivars (Triticum aestivum L.)

The interaction between the fungal pathogens under combined stress at plant interface

Stress 1: Pyrenophora tritici-repentis Stress 2: Puccinia tritici Stage of plant: Seedling

The table shows the competitive interaction between fungus *P. tritici-repentis* and *P. tritici* in wheat cultivars in relation to the germination, appressorium formation, germ tube formation, fungal re-isolation, incubation period and disease lesion formed by the pathogen

Spore pro	duction i	n the absence of competition		
Cultivar	Leaf stage	Treatment	Response under combined stress (Type B Parameter*)	
			Conidia (x10 ²)/leaf	
2145	Young	<i>P. tritici-repentis</i> (1×10 ⁴ conidia/mL)	13.10	
	Old	<i>P. tritici-repentis</i> $(1 \times 10^4 \text{ conidia/mL})$	40.77	
Jagger	Young	<i>P. tritici-repentis</i> (1×10 ⁴ conidia/mL)	3.20	
	Old	<i>P. tritici-repentis</i> (1×10 ⁴ conidia/mL)	6.69	
TAM 217	Young	<i>P. tritici-repentis</i> (1×10 ⁴ conidia/mL)	10.77	
	Old	<i>P. tritici-repentis</i> (1×10 ⁴ conidia/mL)	31.74	
2145	Young	P. tritici (2 mg spores/mL)		15.68
	Old	P. tritici (2 mg spores/mL)		4.27
Jagger	Young	P. tritici (2 mg spores/mL)		213.4
	Old	P. tritici (2 mg spores/mL)		171.1
TAM	Young	P. tritici (2 mg spores/mL)		306.8
217	Old	P. tritici (2 mg spores/mL)		210.3
		en P. tritici-repentis and P. tritici	·	•
		niospore production by <i>P. triticina</i> when <i>P. tritici-repentis</i> was absent	n <i>P. tritici-repentis</i> wa	s present as a competitor
Cultivar	Leaf stage	Treatment		Proportion of urediniospores production
2145	Young	<i>P. tritici</i> (2 mg spores/mL) + <i>P. tritici</i> conidia/mL) (Simultaneous stress) on	0.31	
	Old	<i>P. tritici</i> (2 mg spores/mL) + <i>P. tritici</i> conidia/mL) (Simultaneous stress) on		0.14

	Young	<i>P. tritici</i> (2 mg spores/mL) + 3 days interval + <i>P. tritici-</i> <i>repentis</i> (1×10^4 conidia/mL) (Sequential stress) on 28 days old plant	0.35	
	Old	<i>P. tritici</i> (2 mg spores/mL) +3 days interval + <i>P. tritici-</i> <i>repentis</i> (1×10 ⁴ conidia/mL) (Sequential stress) on 28 days old plant	0.32	
	Young	<i>P. tritici-repentis</i> $(1 \times 10^4 \text{ conidia/mL}) + P. tritici (2 mg spores/mL) (Sequential stress) on 31 days old plant$	0.19	
	Old	<i>P. tritici-repentis</i> $(1 \times 10^4 \text{ conidia/mL}) + P. tritici (2 mg spores/mL) (Sequential stress) on 31 days old plant$	0.38	
Jagger	Young	<i>P. tritici</i> (2 mg spores/mL) + <i>P. tritici-repentis</i> $(1 \times 10^4 \text{ conidia/mL})$ (Simultaneous stress) on 28 days old plant	0.73	
	Old	<i>P. tritici</i> (2 mg spores/mL) + <i>P. tritici-repentis</i> $(1 \times 10^4 \text{ conidia/mL})$ (Simultaneous stress) on 28 days old plant	0.31	
	Young	<i>P. tritici</i> (2 mg spores/mL) + 3 days interval + <i>P. tritici-</i> <i>repentis</i> (1×10^4 conidia/mL) (Sequential stress) on 28 days old plant	0.89	
	Old	<i>P. tritici</i> (2 mg spores/mL) + 3 days interval + <i>P. tritici-</i> <i>repentis</i> (1×10^4 conidia/mL) (Sequential stress) on 28 days old plant	0.58	
	Young	<i>P. tritici-repentis</i> $(1 \times 10^4 \text{ conidia/mL}) + P. tritici (2 mg spores/mL) (Sequential stress) on 31 days old plant$	0.54	
	Old	<i>P. tritici-repentis</i> $(1 \times 10^4 \text{ conidia/mL}) + P. tritici (2 mg spores/mL) (Sequential stress) on 31 days old plant$	0.62	
TAM 2107	Young	<i>P. tritici</i> (2 mg spores/mL) + <i>P. tritici-repentis</i> $(1 \times 10^4 \text{ conidia/mL})$ (Simultaneous stress) on 28 days old plant	0.25	
	Old	<i>P. tritici</i> (2 mg spores/mL) + <i>P. tritici-repentis</i> $(1 \times 10^4 \text{ conidia/mL})$ (Simultaneous stress) on 28 days old plant	0.086	
	Young	<i>P. tritici</i> (2 mg spores/mL) + 3 days interval + <i>P. tritici-</i> <i>repentis</i> (1×10^4 conidia/mL) (Sequential stress) on 28 days old plant	0.40	
	Old	<i>P. tritici</i> (2 mg spores/mL) +3 days interval + <i>P. tritici-</i> <i>repentis</i> (1×10^4 conidia/mL) (Sequential stress) on 28 days old plant	0.26	
	Young	<i>P. tritici-repentis</i> $(1 \times 10^4 \text{ conidia/mL}) + P. tritici (2 mg spores/mL) (Sequential stress) on 31 days old plant$	0.28	
	Old	<i>P. tritici-repentis</i> $(1 \times 10^4 \text{ conidia/mL}) + P. tritici (2 mg spores/mL) (Sequential stress) on 31 days old plant$	0.16	
-		ial production by <i>P. tritici repentis</i> when <i>P. triticina</i> was pres was absent	sent as a competitor compared	
Cultivar	Leaf	Treatment	Proportion of conidial	
2145	stage	<i>P. tritici-repentis</i> $(1 \times 10^4 \text{ conidia/mL}) + P. tritici (2 mg)$	production	
2145	Young	spores/mL) (Simultaneous stress) on 31 days old plant	1.11	
	Old	<i>P. tritici-repentis</i> $(1 \times 10^4 \text{ conidia/mL}) + P. tritici (2 mg spores/mL) (Simultaneous stress) on 31 days old plant$	1.10	
	Young	<i>P. tritici-repentis</i> $(1 \times 10^4 \text{ conidia/mL}) + 3 \text{ days interval} + P. tritici (2 mg spores/mL) (Sequential stress) on 28 days old plant$	1.42	
	Old	<i>P. tritici-repentis</i> $(1 \times 10^4 \text{ conidia/mL}) + 3 \text{ days interval} + P. tritici (2 mg spores/mL) (Sequential stress) on 28 days$	1.20	

		old plant	
	Young	<i>P. tritici</i> (2 mg spores/mL) + <i>P. tritici-repentis</i> $(1 \times 10^4 \text{ conidia/mL})$ (Sequential stress) on 31 days old plant	0.89
	Old	<i>P. tritici</i> (2 mg spores/mL) + <i>P. tritici-repentis</i> $(1 \times 10^4$ conidia/mL) (Sequential stress) on 31 days old plant	0.96
Jagger	Young	<i>P. tritici-repentis</i> $(1 \times 10^4 \text{ conidia/mL}) + P. tritici (2 mg spores/mL) (Simultaneous stress) on 31 days old plant$	0.58
	Old	<i>P. tritici-repentis</i> $(1 \times 10^4 \text{ conidia/mL}) + P. tritici (2 mg spores/mL) (Simultaneous stress) on 31 days old plant$	0.66
	Young	$P. tritici-repentis (1 \times 10^4 \text{ conidia/mL}) + 3 \text{ days interval } +$ $P. tritici (2 \text{ mg spores/mL}) (Sequential stress) on 28 \text{ days}$ old plant	1.66
	Old	<i>P. tritici-repentis</i> $(1 \times 10^4 \text{ conidia/mL}) + 3 \text{ days interval} + P. tritici (2 mg spores/mL) (Sequential stress) on 28 days old plant$	1.37
	Young	<i>P. tritici</i> (2 mg spores/mL) + <i>P. tritici-repentis</i> $(1 \times 10^4 \text{ conidia/mL})$ (Sequential stress) on 31 days old plant	0.13
	Old	<i>P. tritici</i> (2 mg spores/mL) + <i>P. tritici-repentis</i> $(1 \times 10^4 \text{ conidia/mL})$ (Sequential stress) on 31 days old plant	0.21
TAM 2107	Young	<i>P. tritici-repentis</i> $(1 \times 10^4 \text{ conidia/mL}) + P. tritici (2 mg spores/mL) (Simultaneous stress) on 31 days old plant$	0.062
	Old	<i>P. tritici-repentis</i> $(1 \times 10^4 \text{ conidia/mL}) + P. tritici (2 mg spores/mL) (Simultaneous stress) on 31 days old plant$	0.87
	Young	$P. tritici-repentis (1 \times 10^4 \text{ conidia/mL}) + 3 \text{ days interval } +$ $P. tritici (2 \text{ mg spores/mL}) (Sequential stress) on 28 \text{ days}$ old plant	0.86
	Old	<i>P. tritici-repentis</i> $(1 \times 10^4 \text{ conidia/mL}) + 3 \text{ days interval} + P. tritici (2 mg spores/mL) (Sequential stress) on 28 days old plant$	1.18
	Young	<i>P. tritici</i> (2 mg spores/mL) + <i>P. tritici-repentis</i> $(1 \times 10^4 \text{ conidia/mL})$ (Sequential stress) on 31 days old plant	0.58
	Old	<i>P. tritici</i> (2 mg spores/mL) + <i>P. tritici-repentis</i> $(1 \times 10^4$ conidia/mL) (Sequential stress) on 31 days old plant	0.66

For raw data – Click here (.xlsx file)

Reference– AL Naimi FA, Garrette KA, Bockus WW (2005) Competition, facilitation, and niche differentiation in two foliar pathogens. Oecologia **143**: 449-457

Note: Values are presented as it is from the source article without subjecting to the calculation.

'*'- For more information on parameters classification, please refer to 'methodology' tab

The inference from the study: Al-Naimi *et al.*, 2005 studied the interaction between the facultative saprophyte *P. tritici – repentis* and obligate biotroph *P. tritici* in old and young leaves of the three wheat cultivars. Both the pathogens were inoculated singly and in combination in different orders on wheat leaves. Three winter wheat genotypes; 2145 supporting high reproduction in *P. tritici-repentis* only, Jagger supporting high reproduction in *P. tritici* only, and TAM 107 supporting high reproduction in both the pathogens. The overall data revealed that the competition among both the pathogens resulted in the high sporulation index for *P. tritici-repentis* than for *P. tritici* for all the cultivars. The overall observations lead to the conclusion that due to interspecific competition *P. tritici* sporulation was substantially reduced in the presence of *P. tritici-repentis*, whereas

P. tritici-repentis had proportionally low reductions in sporulation in the presence of *P. tritici* irrespective of the genotype supporting the high sporulation of either fungus.