

Role of miR164c under combined stress

ath-miR164c influences plant responses to the combined stress of drought and bacterial infection by regulating proline metabolism

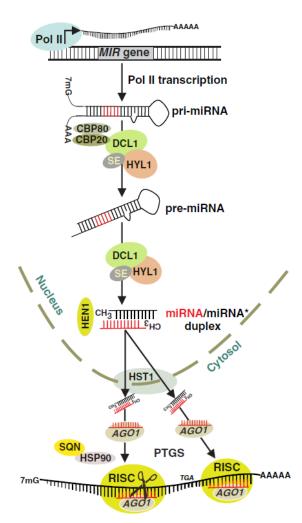
Environmental and Experimental Botany 172 (2020) 103998

Aarti Gupta¹, Mahesh Patil¹, Aarzoo Qamar, Muthappa Senthil-Kumar

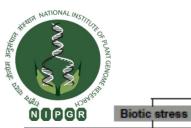
National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India

□In nature plants are exposed combination of stresses during

its life cycle which affects its growth and productivity


- □ To combat stress plants have adapted several morphophysiological & molecular mechanisms
- □ Molecular mechanisms- regulation of gene expression, protein synthesis and degradation etc.
- Among the key molecular players, miRNAs known play a vital role in stress response

miRNAs biogenesis & function



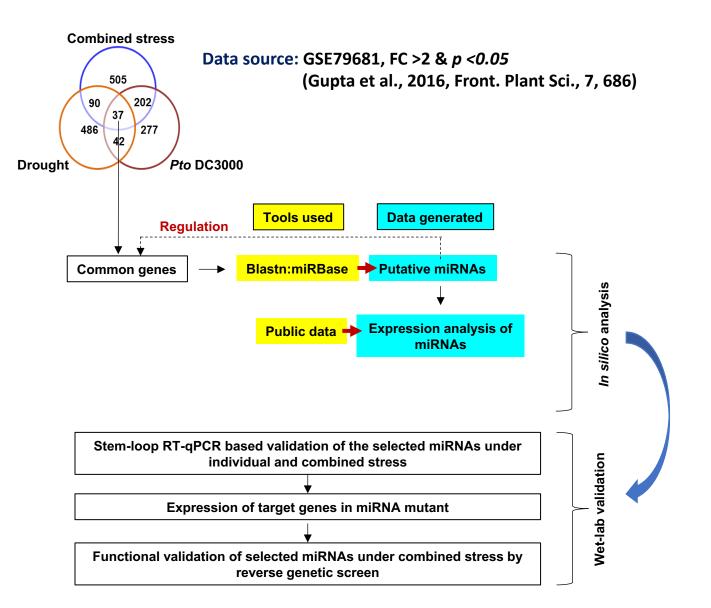
miRNAs are small regulatory RNAs of 20–22 nucleotides that are encoded by endogenous MIR genes, function by causing TGS or PTGS

DCL1- DICER LIKE 1 HYL1- HYPONASTIC LEAVES 1 SE- SERRATE HEN1- HUA ENHANCER 1 HST1- HASTY1 AGO1- AGONATE 1 RISC- RNA INDUCED SILENCING COMPLEX

miRNAs in different stresses

Stress-regulated small RNAs and their target families

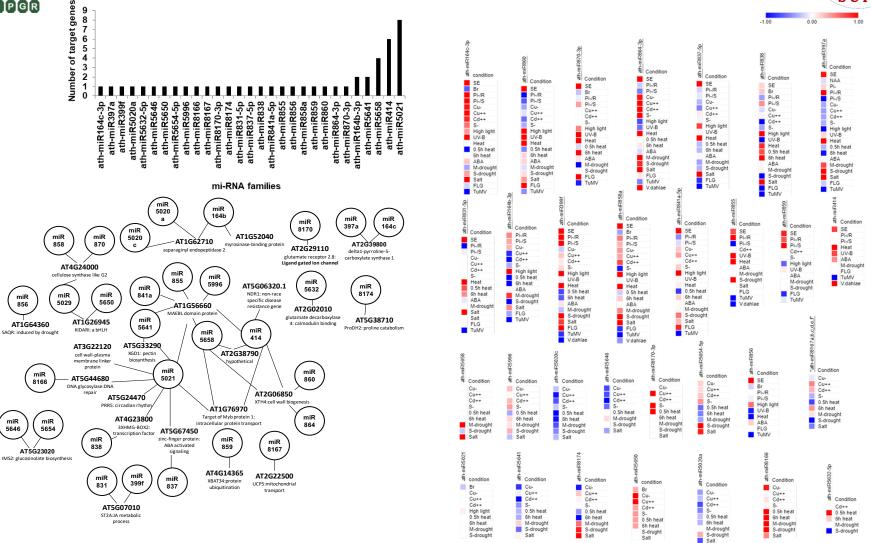
Abiotic stress


Viral infection	Bacterial infection	Hypoxia stress	ABA stress	Cold stress	Salt stress	Drought stress
MIRIS6 - SBP-LIKE	M-mIR160 - HD-ZIPIII	zm-mIR159 – MYB	319/159 TCP/MYB	ALMIR166 - HD-ZIPIII	AI-MIR166 - SBP-LIKE	M-MIR157 - SBP-LIKE
NI-MIR160 - ARF	A-MIR167 - ARF	zm.mlR166 - HD-ZIPIII	Al-MIR160 - ARF	AI,8d,Pt- MIR169 2-1	zm-mIR156 - SBP-LIKE	ALMIR167 - ARF
ALNI	A-MIR393 - TIR1/AFB	zm-miR167 - ARF	Os-MIR167 - ARF	MIR172 - AP2-LIKE	AI-MIR168 - PPR	AI-MIR168 - AGO
Br-mIR1885 -TIR-NBS-LRR	ALMIR398 - CSD	zm-miR171 - Spry-2	MICS- MIR169 - NFY	M-MIR393 TIR1/AFB	zm-mIR162 - DCL	ALMIR169 - NFY
Br-miR158 - PPR	ALMIR625 - Zinc finger	AL-MIR395 - APS	At, Py- MIR393 TIR1/AFB	AI-MIR396 - GRF	ALMIR167 - ARF	Os,M- mIR169 - MtHAP2-1
Nematode infection	At-natsiRNAA TGB2 - PPRL	os-miR396 - WRKY	At-mIR397 - Laccase	At,Bd,Pt. MIR397 - Laccase	zm-miR167 – ARF	At-mIR171 - SCL
AL-MIR160 - ARF		PI-MIR474 - Acyl-CoA thioesterase	ALMIR398 - CSD	AI-MIR408 - PCL	ALZTM- MIR168 - AGO	319/159 TCP/MYB
AL-MIR164 NAC		os-miR528 - Aldehyde dehydrogenase	Al-miR389a - Unknown	R-MIR168 AGO	ALZE -NFY/MtHAP MIR169 2-1	ALOS,MLPV- MIR393 - TIR1/AFB
AI-MIR167 - ARF	Fungal infection	Al-tasiR289 ppps	At-mIR402 - HhH-GPD	R-MIR477 a,b - GRAS	Al-miR171 - SCL	AI-MIR396 - GRF
AL-MIR171 - SCL		(TASta,b,c)	Al-MIR417 - RDRP	P-mIR156 9-j - SBP-LIKE	AL-TIB 319/159 - TCP/MYB	AI-mIR397 - Laccase
AI-MIR396 - GRF		Nutrient homeostasis	Pv-mIR2118-U170K- related	P-miR475 PPR	MIR393 TIR1/AFB	Mr-mIR396 - CSD
A-mIR398 - CSD		High N	Pv. MIR159.2 Chlatrin heavy chain	PI-MIR476a - PPR	At-mIR394 - F-box	MIR408 -Plastocyanin
At-siRNA9 At5g18900	Ta-miR159 - MYB Ta-miR164 - NAC	ALMIR167a - ARF Low PO, ³	PV-MIRS1 _ BHLH	AI-MIR402 - HhH-GPD	Zm-miR395 - AST/APS	Os-mIR156 - SBP-LIKE
AL-SIRNA32 - RC/Helitron	Ta-miR171 SCL	M-miR399 - E2-UBC	Pv-mIR1514 - PSEME1- felated	Ta-SIRNA 005047_0654_ 1904.1	ALMIR396 - GRF	Os-mIR168 - AGO
AL-SIRNA41 - At1g50890	Ta-miR393 TIR1	Low SO,3	Pv-mIR21 19- ADH1	Heat stress	zm-mIR396 - GRF	os-miR172 - AP2-LIKE
AL-SIRNA46 - At1g72960	Ta-mIR396 - GRF	Bh-MIR160 - ARF	Pp-mIR1026 - DHLH	Ta-miR156 - SBP-LIKE	M-miR397 - Laccase	os-miR319 - TCP
Symbiotic nitrogen	GHI GHI	Bn-MIR164 - NAC	UV-B radiation	Ta-miR159 - MYB	ALTINIR398 - CSD	Os-miR396 - GRF
fixation		Bn-MIR394 - F-box	ALPITINITIS6 - SBP-LIKE	Ta-miR160 - ARE	Pl-mIR482.2 DRP	os-miR397 - Laccase
Gm-MIR159 - MYB		AL-MIR395 _ AST/APS	A-miR159 - MYB	Ta-miR166 - HD-ZIPIII	PI-MIR1450 - L-RTMK	os-miR408 -Plastocyanin
Gm-MIR160 - ARF Gm-MIR164 - NAC	Oxidative stress	Low Cu"	AL Pr.		Ps-miR171SCL	PI-MIR1446 - GRML
Gm-miR166 - HD-ZIPIII	AL-MIR398 - CSD	At-mIR398 - CSD	ALPIN HD ZIDIII	100	PI-mIR530a - Zing knuckle	PimiR1444_Polyphenol
gm miR168 AGO	Mechanical stress	AL-MIR397 - Laccase AL-MIR408 - PCL		Ta-mIR169 - MtHAP2-1	PI-MIR1445 _ DHPM	Pt-miR1447 - Ankyrin repeat
gm-mIR169 MtHAP2-1	R-mIR156 - SBP-LIKE	AL-MIR857 - Laccase	Pt-miR167 - AHF	Ta-mIR172 - AP2-LIKE	PI-MIR1446 - GRML	R. mIB1450 - L-BTMK
Gm-mIR172 AP2-LIKE	R-mIR162 - DCL	Heavy metal (Cd ² ')	ALMIR169 -NFY/MtHAP	Ta-mIR393 - TIR1	PI-miR1447 - Ankyrin Pi-miR1447 - Ankyrin	Pv-mIR2118 -U170K- related
Gm-miR393 - TIR1	R-MIR164 - NAC	Ba-miR160 - ARF	At-miR171 - SCL	Ta-mIR627 - Unknown	Pr-miRS1 - bHLH	Pv. mIR159.2 Chlatrin beavy chain
gm-miR396 GRF	Plastocyanin	Bn-miR164 - NAC	Al-miR172 - AP2-LIKE	Ta-SIRNA 002061_0636_ 3054.1	Py. mIR159.2 Chlatrin beavy chain	Ta-SIRNA 002061_0636_
Gm-mIR482 -Gm12g28730	PS-MIR475 - PPR	Bn-miR394 - F-box	ALMIR393 - TIR1/AFB	Ta-SIRNA 005047_0654_	SRO5-PSCDH DECOM	3054.1 Ta-SIRNA 005047 0654
Gm-mIR1521-Gm08g12340	Pt-MIR480 - PDOT	os-miR602 - XET	AL Ptr-	1904.1		1904.1
M-mIR169 MtHAP2-1	Pt-miR481 - Unknown	Os-MIR604 - WAK-LIKE	MIR398 - CSD ALMIR401 - Unknown	Ta-SIRNA 080621_1340_ 0098.1	Ta-SIRNA 002061_0636_ 3054.1	Ta-SIRNA 007927_0100_ 2975 1
						20/0.1

No miRNAs under combined stress

Methodology

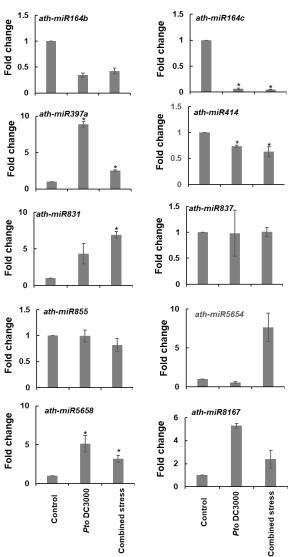
In silico analysis

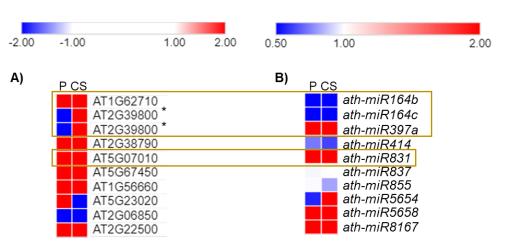

and their Interacti

SCIP

Plants Databa

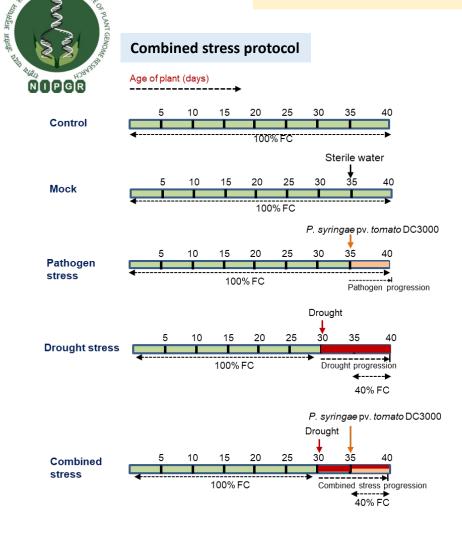
miRNA and mRNA association network


10 miRNAs were selected based on their expression under stress and hybridization energy

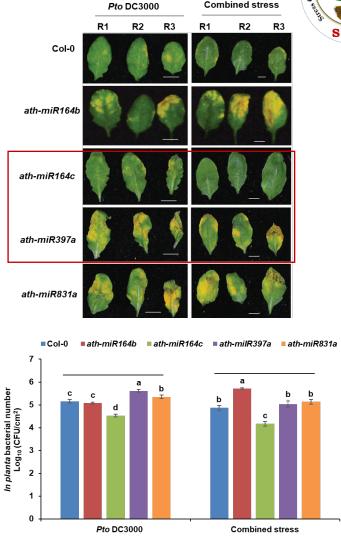


Wet lab validation

Expression analysis

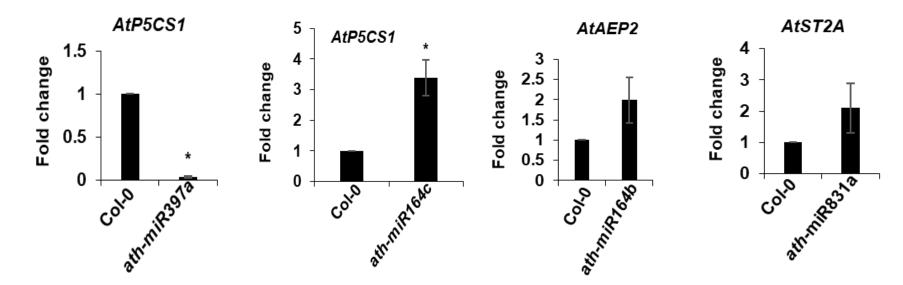


ath-miR164b, ath-miR64c, ath-miR397a, ath-miR831 were selected for further analysis


Combined stress response of miRNA mutants

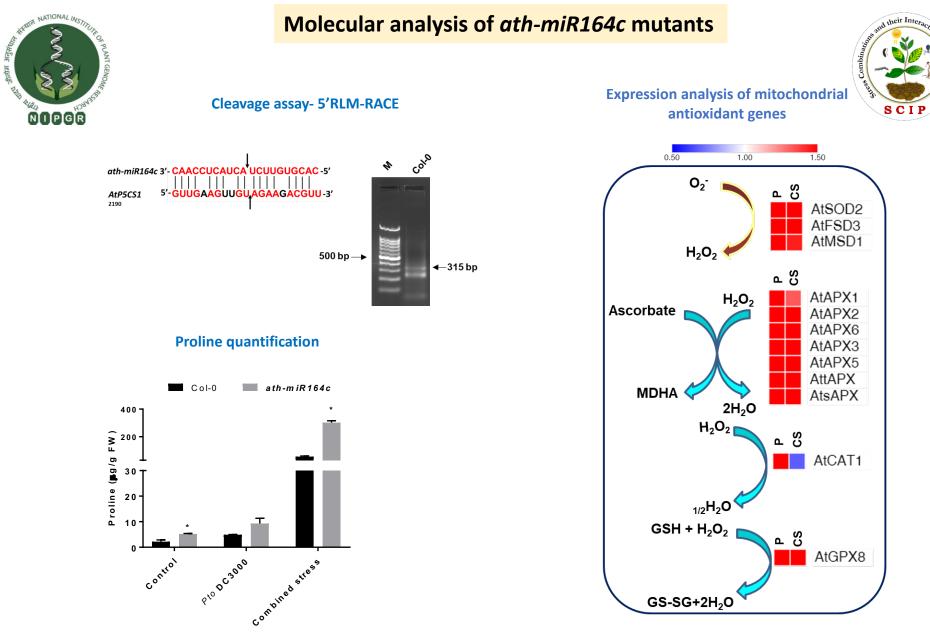
Combined stress

APATHEN NATIONAL INSTITUT



Why ath-miR164c & ath-miR397a mutants showed differential stress response of ??

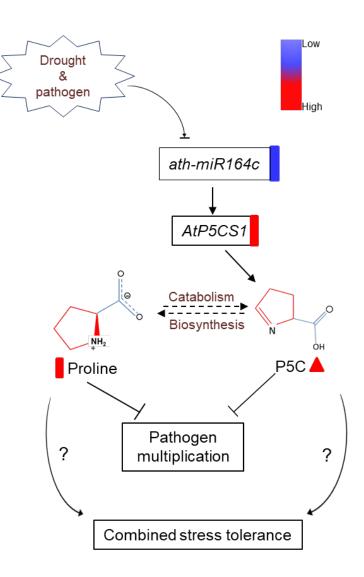
Target gene expression analysis in mutants



ath-miR164c & ath-miR397a differentially regulate AtP5CS1 gene expression and that could be

the reason for differential stress response

Is there change in proline level in *ath-miR164c* mutant ??



ath-miR164c showed increased proline accumulation and enhanced antioxidant genes expression under pathogen and combined stress which resulted in improved resistance

A hypothetical model depicting *ath-miR164c*-mediated *AtP5CS1* regulation in *A. thaliana* under combined stress

- ath-miR164c acts as a negative regulator of AtP5CS1 and indirectly regulates proline-P5C levels
- miRNA-mediated regulation of proline pathway act as convergent point for both biotic and abiotic stress and further, that can be exploited for the crop improvement.

Future prospective

Proline pathway is known to be regulated by more than one miRNA, further studies are needed in this area for better understanding of proline pathway regulation under different combined stresses.

- Gupta A, Patil M, Qamar A, Senthil-Kumar M. ath-miR164c influences plant responses to the combined stress of drought and bacterial infection by regulating proline metabolism. Environmental and Experimental Botany. 2020 Apr 1;172:103998.
- Khraiwesh B, Zhu JK, Zhu J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2012 Feb 1;1819(2):137-48.

Acknowledgements

Science and Engineering Research Board (SERB) Department of Science and Technology (DST) Govt. of India

